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INTRODUCTION

Colorectal cancer (CRC), a cancer originates
from the epithelial cells lining the colon or rec-
tum, is one of most common malignancies and
the second highest cause of cancer-related
deaths in males and third largest in females (Je-
mal et al. 2011; Yan and Guo 2015). It is charac-
terized by blood in the stool, a change in bowel
movements, weight loss and feeling tired all the
time, due to the body aging, lifestyle factors,
and accumulation of epigenetic and genetic
events (Giovannucci 2003; Migliore and Mighe-
li 2011). It has been reported that more than 1.4
million new cases are diagnosed with CRC ev-
ery year, and more than 690,000 die from the dis-
ease (Brenner 2014). Since CRC is often found at
an advanced stage, early detection and diagno-
sis have become particularly important (Walsh
and Terdiman 2003). Furthermore, a comprehen-

sive understanding of pathological mechanism
underlying CRC is essential and urgent for early
prevention and treatment of this tumor.

For the diagnosis of CRC, biomarkers that
have high sensitivity and specificity are para-
mount. To the best of our knowledge, multiple
studies have paid attention to genetic changes
in CRC (Mais et al. 2015; Qiu et al. 2016; Wood et
al. 2007). Several mutated genes have been fre-
quently detected in CRC patients, including
APC, BRAF, KRAS, PIK3CA and TP53, and are
regarded as drivers of colorectal tumorigenesis
(Wood et al. 2007). However, there is a few re-
searchers focus on epigenetic difference exist-
ed in CRC patients. Briefly, DNA methylation, is
one of major types of epigenetic modifications
closely linked to CRC (Baylin and Jones 2016).
Besides, it is associated with numerous key pro-
cesses, such as microRNA expression regula-
tion (He et al. 2011), gene silencing (Geiman and
Robertson 2002) and alternative gene splicing
in cancer (Flores et al. 2012). Houlihan et al de-
scribed that aberrant DNA methylation of CpG
islands was deposited in the earliest detectable
lesions in the colonic mucosa, aberrant crypt
foci (Houlihan 2002). DNA methylation epigeno-
types could be suitable for classification mark-
ers between CRC patients and normal controls
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(Yagi et al. 2010). Importantly, epigenetic switch-
ing of H3K27me3 and DNA methylation mainly
occurred at genes that were expressed in CRC
(Jiang et al. 2008). Furthermore, colorectal tu-
mors with KRAS mutations may also be associ-
ated with a unique DNA methylation profile (Goel
et al. 2010). Despite the fact that several diag-
nostic panels have been developed, the pathol-
ogy of CRC still remains poor.

Objective

Therefore, in this paper, to better understand-
ing potential molecular mechanism of CRC, dif-
ferentially methylated genes (DMGs) were iden-
tified based on the DNA methylation data. Sub-
sequently, a hierarchical clustering analysis was
conducted on the DMGs to verify the confidence
of them. Functional enrichment analyses were
employed to explore significant gene sets of the
DMGs. Finally, a protein-protein interaction (PPI)
network was constructed on DMGs, and further
topological centrality analysis was carried out
to extract hub DMGs. These results might pro-
vide evidence of the cumulative roles of epige-
netic mechanisms in CRC, and shed new lights
on CRC early diagnosis and treatment.

METHODOLOGY

DNA Methylation Data Collection

In this paper, the raw DNA methylation data
for CRC with accessing number E-GEOD-25062
(Hinoue et al.  2012) were recruited from the public
free ArrayExpress database (http://www.ebi.ac.uk/
arrayexpress/). In brief, E-GEOD-25062 was con-
sisted of 125 colorectal tumor samples and 29 nor-
mal-adjacent colonic tissue samples. Besides, it
presented on A-GEOD-8490 - Illumina HumanMe-
thylation27 BeadChip (Illumina Inc., California,
USA), which enabled the simultaneous quanti-
tative measurements of 275,578 CpG sites.

Data Quality Control and Normalization

During this step, the raw DNA methylation
data were obeyed to a set of rigorous quality
controls and normalizations. If probes were sat-
isfied with one of the following criteria, it would
be removed from the data. The criteria were: 1)
the distance from CpG to single-nucleotide poly-
morphism (SNP) <2; 2) minimum allelic frequen-

cy < 0.05; 3) probes of cross-hybridising; and 4)
probes on X and Y chromosomes. The filtrated
methylation data were normalized according to
the beta-mixture quantile normalization method,
which improves the robustness of the normal-
ization procedure and reduces the technical vari-
ation and bias (Teschendorff et al. 2013). Ulti-
mately, a total of 25,628 CpGs were determined,
and defined as DNA methylation data for in-
depth exploitation.

Differential Methylation Analysis

Generally, methylation at individual CpGs is
reported as a methylation β-value, which is a
quantitative measure of methylation for each
CpG site with range between 0 (no methylation)
to 1 (completely methylated) (Wu et al. 2016).
Herein, the β-values (percent methylation chang-
es) were calculated to CRC group and normal
group, respectively. In order to reduce the num-
ber of non-variable CpGs and improve the sta-
tistical power of subsequent analyses, the sits
with β-values > 0.8 and < 0.2 were eliminated in
all samples. And then the absolute difference
for mean â-values in CRC samples and controls
was counted, named as score for the CpG. Most
important, we implemented the t-test to identify
differential methylated CpGs between two
groups, and the cut-off was set as P < 0.01 and
Score > 0.05. The genes covered by differential
methylated CpGs were considered to DMGs for
CRC patients.

Hierarchical Clustering Analysis

For purpose of evaluating the classification
performance of DMGs and validating the feasi-
bility of the present approach, a hierarchical clus-
tering analysis was applied across 125 CRC sam-
ples and 29 normal controls using the Cluster
3.0 (University of Tokyo, Tokyo, Japan) (Hoon
2002). The algorithm was set to complete link-
age clustering using an uncentered correlation
and to determine clusters of similar data in mul-
tidimensonal spaces. Ideally, the samples should
be classified into 2 major clusters: CRC cases
and normal controls. The present study tested
the method by measuring the percentage of test
samples that could be correctly classified. Sup-
posing that CRC belonged to positive samples,
and normal controls were attributed to negative
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samples, accuracy was computed as following
(Mohammadi et al. 2011).

Where TP (true positive) represented the
number of positive samples correctly predicted
as positive; TN (true negative) stood for the
number of negative samples correctly predicted
as negative; FP (false positive) was the number
of negative samples incorrectly predicted as
positive and FN (false negative) referred to the
number of positive samples incorrectly predict-
ed as negative. Of note, a high accuracy indicat-
ed a good classification performance, and fur-
ther validated the confidence of DMGs and the
feasibility of the presented method.

Functional Enrichment Analyses

To further investigate significant functional
gene sets enriched by DMGs of CRC, Gene On-
tology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment anal-
yses were conducted using the Database for
Annotation, Visualization and Integrated Dis-
covery (DAVID, https://david.ncifcrf.gov/) tool.
Here, the DAVID provides a comprehensive set
of functional annotations for investigators to
understand biological meaning behind large list
of genes (Huang da et al. 2009). Specifically, GO
produces a dynamic, controlled vocabulary that
can be applied to all eukaryotes even as knowl-
edge of gene and protein roles in cells is accu-
mulating and changing (Ashburner et al. 2000;
Wang et al. 2018; Zhou et al. 2018). While KEGG
is a knowledge base for systematic analysis of
gene functions, linking genomic information with
higher order functional information (Kanehisa
and Goto 2000; Pita-Juarez and Altschuler 2018).
In addition, the expression analysis systematic
explored (EASE) test (Wang and Simon 2011)
implemented in DAVID was utilized to filtrate
significant GO terms and pathways with P < 0.01
and Count > 20.

PPI Network Construction and
Topological Analysis

With an attempt to investigate interactions
among DMGs, a PPI network was constructed
based on the Search Tool for the Retrieval of
Interacting Genes/proteins (STRING, http://
string.embl.de/) database, which offers a critical
assessment and integration of PPIs, including
direct as well as indirect associations (Szklarc-

zyk et al. 2014). Furthermore, the network was
visualized by Cytoscape (http://www. cytoscape.
org/) software. Here, Cytoscape is a free soft-
ware package for visualizing, modeling and ana-
lyzing the integration of bimolecular interaction
networks with high-throughput expression data
and other molecular states (Smoot et al. 2011). In
order to evaluate the importance for individual
genes in the PPI network of CRC, topological
centrality analysis was conducted using the
degree index. Degree quantifies the local topol-
ogy of each node, by summing up the number of
its adjacent nodes (Wasserman 1994).

RESULTS

DMGs

In the present study, DNA methylation data
with 275,578 CpGs for CRC patients were recruit-
ed from the ArrayExpress database. When con-
ducting quality control and normalization, the
CpGs which were not satisfied with the criteria
were removed. As a result, 25,628 methylated
CpGs remained in the final dataset of 154 sam-
ples for CRC. Here, the β-values were utilized in
graphical representations of the data and dem-
onstrated the percentage of methylation count-
ed by methylated. And then a t-test was utilized
to evaluate the differentially methylated CpGs
under the thresholds of P < 0.01. As shown in
Figure 1, a volcano plot exhibiting the distribu-
tion of the 4,792 differentially methylated CpGs
(representing 3,503 genes). Furthermore, a score
was computed for everyone of 4,792 differen-
tially CpGs based on its methylation β-value,
and the Score > 0.05 was regarded as the other
threshold for selection of DMGs. Consequent-
ly, a total of 1,494 differentially CpGs (covering
1,123 genes) were reserved, and the 1,123 genes
were defined as DMGs between CRC patients
and normal controls for further exploitation in
the subsequent analysis.

Evaluation for the DMGs

To assess the classification performance for
1,123 DMGs of CRC and validate the feasibility
of the present method, a hierarchical clustering
analysis was conducted, and the cluster heat-
map was illustrated in Figure 2. Globally, there
were distinguished methylation patterns for CRC
samples and normal controls, which segregated

Accuracy = TN+TP
TN+TP+FN+FP
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samples into two distinct groups approximately.
Specifically, 124 CRC samples and 29 normal
controls were correctly distinct, whereas 1 CRC
samples were wrongly attributed to normal sam-
ples. Thus, the accuracy for these DMGs was
0.9935, which suggested that the DMGs had a
good classification performance across CRC
patients and normal controls and even enhanced
the stability and confidence of the present study.

Enriched GO Terms by DMGs

For purpose of revealing significant biolog-
ical functions in CRC compared with normal con-
trols, GO functional enrichment analyses on
DMGs were performed. When setting the thresh-
olds as P < 0.01 and Count > 20, a total of 264
significant GO terms were detected. Step fur-
ther, to reinforce the relationship between these
terms and CRC progression, we refined the 264
significant GO terms by the condition of Count
> 50, and the results were displayed in Table 1.
Total 37 significant GO terms with P < 0.01 and
Count > 50 were gained, of which calcium ion
homeostasis (P = 3.68E-14, Count = 82), cell-cell

Fig. 1. Volcano plot exhibiting methylation data of
125 colorectal cancer (CRC) samples and 6 normal
samples. X axis stood for the mean methylation
differences between CRC and normal. Y axis
represented the log transformed P values. A total of
4,792 CpG sites were considered significantly
differently methylated, shown in blue
Source: Author

Fig. 2. Hierarchical clustering analysis of significantly differentially methylated genes (DMGs) between
colorectal cancer (CRC) patients and normal samples. Each row was an individual DMG and each column
stood for a different sample. Color gradation from green to red denoted low to high DNA methylation
respectively, with â-values ranging from 0 (no methylation; green) to 1 (complete methylation; red)
Source: Author
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signaling by wnt (P = 3.68E-14, Count = 76) and
cellular calcium ion homeostasis (P = 3.50E-13,
Count = 70) were the three most significant ones
in the progression of CRC patients.

Enriched KEGG Pathways by DMGs

In this section, KEGG pathway enrichment
analysis was performed on DMGs of CRC, and
the results were listed in Table 2. There were 31
significant pathways met to the criterion P < 0.01
and Count > 20 in total. Particularly, the top three
significant pathways were Calcium signaling
pathway (P = 4.19E-20, Count = 67), Wnt signal-
ing pathway (P = 5.18E-10, Count = 55) and Cell
adhesion molecules (CAMs) (P = 2.22E-07, Count
= 63), which might play more important roles
than the others of the 31 significant pathways
for CRC process.

Hub DMGs

As mentioned above, the feasibility and con-
fidence of DMGs had been validated. Further-
more, to explore the interactions or co-opera-
tions among the 1,123 DMGs, a PPI network was
constructed dependent on the STRING data-
base. Besides, the inherent value in the STRING
database for an interaction was defined as its
combined score. Note that only the interactions
of required confidence (combined score) great-
er than 0.8 were permitted to be retained in the
PPI network, naming sub-network. The sub-net-
work containing 236 nodes representing DMGs
and 1,361 edges representing interactions with
DMGs was illustrated in Figure 3. Subsequent-
ly, topological centrality analysis was carried out
on nodes in the sub-network using the degree
index, and the top 3 percent in descending order

Table 1: Significant GO terms with P < 0.01 and Count > 50

ID GO term P value Count

GO:0055074 calcium ion homeostasis 3.68E-14 82
GO:0198738 cell-cell signaling by wnt 3.68E-14 76
GO:0006874 cellular calcium ion homeostasis 3.50E-13 70
GO:0051962 positive regulation of nervous system development 2.45E-11 69
GO:0007423 sensory organ development 6.03E-09 69
GO:0044708 single-organism behavior 1.08E-12 67
GO:0048514 blood vessel morphogenesis 7.12E-08 65
GO:0007389 pattern specification process 2.85E-09 64
GO:0006875 cellular metal ion homeostasis 1.23E-07 63
GO:0044057 regulation of system process 4.71E-07 63
GO:0072507 divalent inorganic cation homeostasis 3.30E-09 62
GO:0008015 blood circulation 5.67E-07 62
GO:0003013 circulatory system process 7.21E-07 62
GO:0007507 heart development 1.03E-06 62
GO:0048568 embryonic organ development 1.18E-08 60
GO:0010720 positive regulation of cell development 9.34E-08 60
GO:0042391 regulation of membrane potential 4.41E-11 59
GO:0030900 forebrain development 9.86E-11 59
GO:0055074 calcium ion homeostasis 3.07E-09 59
GO:0072503 cellular divalent inorganic cation homeostasis 8.69E-09 59
GO:0007409 axonogenesis 5.91E-09 57
GO:0050769 positive regulation of neurogenesis 8.91E-09 57
GO:0010975 regulation of neuron projection development 6.22E-08 57
GO:0001501 skeletal system development 1.94E-05 57
GO:0015672 monovalent inorganic cation transport 3.41E-05 57
GO:0034762 regulation of transmembrane transport 2.38E-07 55
GO:0023061 signal release 5.67E-07 55
GO:0034765 regulation of ion transmembrane transport 1.87E-07 54
GO:0001525 angiogenesis 1.72E-06 54
GO:0045165 cell fate commitment 3.50E-13 52
GO:0003012 muscle system process 1.37E-06 52
GO:0010817 regulation of hormone levels 2.69E-04 51
GO:0022604 regulation of cell morphogenesis 2.69E-04 51
GO:0061564 axon development 4.42E-04 51
GO:0043410 positive regulation of MAPK cascade 4.64E-04 51
GO:0050878 regulation of body fluid levels 1.05E-03 51
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of degree distribution were regarded as hub
DMGs of this sub-network. A total of 7 hub
DMGs were identified, CASR (Degree = 77),
PLCB1 (Degree = 68), AGTR1 (Degree = 61),
MCHR2 (Degree = 60), GRM4 (Degree = 59),
ADCY1 (Degree = 53), and ADCY8 (Degree =
49).

DISCUSSION

DNA methylation, is a result of the covalent
addition of a methyl group at the 5’ position of
the pyrimidine ring of cytosines within the con-
text of CpG dinucleotides, and has a variety of
important functions, including control of gene
expression, cellular differentiation, genomic im-
printing and X-chromosome inactivation (Her-
mann et al. 2004; Sibbons et al. 2018). Particular-
ly, DNA methylation is stable and easily detect-
ed qualitatively or quantitatively. Hence it has
been taken as the most promising diagnostic
marker for early detection of cancer (Zhao et al.
2014). Meanwhile, If CRC was detected early

before metastasis established, it would be easi-
ly cured by surgical procedures (Guo et al. 2018;
Toiyama et al. 2014). Consequently, early detec-
tion of CRC is a decisive step in the successful
cure of this tumor.

Therefore, in the present study, the research-
ers aimed to identify aberrant DNA methylations
as significant signatures of CRC, and reveal epi-
genetic mechanism underlying CRC by multiple
bioinformatics analyses. Particularly, using the
DNA methylation data, DMGs between CRC
samples and normal controls were identified us-
ing t-test. And the DMGs were confirmed with a
good classification performance between CRC
and controls, which enhanced the feasibility of
this study. Results of the functional enrichment
analyses showed that 37 significant GO terms
and 31 significant pathways were detected.
Moreover, a total of 7 hub DMGs were investi-
gated by topological centrality analysis for sub-
network of PPI network. On the basis of these
results, the potential mechanisms of CRC were

Table 2: Significant KEGG pathways with P < 0.01 and Count > 20

ID Pathway P value               Count

PATH:hsa04020 Calcium signaling pathway 4.19E-20 67
PATH:hsa04310 Wnt signaling pathway 5.18E-10 55
PATH:hsa04514 Cell adhesion molecules (CAMs) 2.22E-07 63
PATH:hsa04024 cAMP signaling pathway 1.14E-06 31
PATH:hsa04970 Salivary secretion 1.42E-06 29
PATH:hsa04725 Cholinergic synapse 5.32E-06 24
PATH:hsa04724 Glutamatergic synapse 5.48E-06 25
PATH:hsa05032 Morphine addiction 9.84E-06 47
PATH:hsa04713 Circadian entrainment 1.81E-05 52
PATH:hsa04727 GABAergic synapse 2.43E-05 59
PATH:hsa04723 Retrograde endocannabinoid signaling 4.21E-05 60
PATH:hsa04916 Melanogenesis 1.11E-04 38
PATH:hsa04971 Gastric acid secretion 1.44E-04 44
PATH:hsa04015 4015 Rap1 signaling pathway 2.03E-04 55
PATH:hsa04730 Long-term depression 2.18E-04 21
PATH:hsa04740 Olfactory transduction 2.46E-04 37
PATH:hsa05200 Pathways in cancer 4.79E-04 38
PATH:hsa05033 Nicotine addiction 5.38E-04 48
PATH:hsa04540 Gap junction 8.97E-04 49
PATH:hsa04915 Estrogen signaling pathway 9.89E-04 49
PATH:hsa04062 Chemokine signaling pathway 1.63E-03 53
PATH:hsa04080 Neuroactive ligand-receptor interaction 2.15E-03 62
PATH:hsa04972 Pancreatic secretion 2.32E-03 58
PATH:hsa05414 Dilated cardiomyopathy (DCM) 2.98E-03 39
PATH:hsa03010 Ribosome 3.24E-03 46
PATH:hsa05016 Huntington’s disease 3.45E-03 50
PATH:hsa04976 Bile secretion 3.94E-03 31
PATH:hsa04022 cGMP - PKG signaling pathway 4.51E-03 57
PATH:hsa04911 Insulin secretion 5.65E-03 42
PATH:hsa05217 Basal cell carcinoma 5.75E-03 47
PATH:hsa04060 Cytokine-cytokine receptor interaction 5.98E-03 38
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revealed, which shed new insights into CRC
diagnosis and therapy.

A recent large-scale comparison between
genes mutated and hypermethylated in CRC re-
vealed significant overlap between these two
alterations (Boot et al. 2017; Chan et al. 2008).
Over-expression of immediate-early response
genes significantly correlate to downstream pro-
tein synthesis and small-molecule metabolite
production, and further take participated in the
colorectal carcinogenesis (Qiu et al. 2016). Coin-
cidently, in the present work, we found that two
significant pathways, cAMP signaling pathway
and Cell adhesion molecules (CAMs), were
closely related to small-molecule metabolite pro-
cesses. Particularly, the most significant path-
way enriched by DMGs was calcium signaling
pathway. In addition, results of GO enrichment
analysis also showed that calcium ion homeo-
stasis and cellular calcium ion homeostasis were
significant between CRC patients and controls.
Hence, we might infer that calcium is crucial for
CRC, which has been confirmed by previous lit-
eratures (Keum et al. 2014; Z et al. 2011). In-
creasing intakes of total calcium, dietary calci-
um, calcium-containing supplement may reduce
the risk of CRC (Z et al. 2011). Most important,
significant GO term cell-cell signaling by wnt
and significant pathway wnt signaling pathway
both uncovered that the wnt signaling acted as
critical roles in CRC patients, which had been
confirmed by Bienz et al. (Bienz and Clevers
2000). Above all, significant GO terms and path-
ways enriched by DMG are related to CRC tight-
ly, which validated the feasibility and enhanced
the confidence of these DMGs of CRC.

 Significantly, 7 hub DMGs were identified
for CRC, which was comprised of CASR, PLCB1,
AGTR1, MCHR2, GRM4, ADCY1 and ADCY8.
In details, CASR was the one with the highest
degree distribution. CASR (calcium sensing re-
ceptor) is a G protein-coupled receptor, expressed
by tissues involved in the control of Ca2+ ho-
meostasis. It could act as a disulfide-linked dim-
mer to couple to multiple signaling pathways
(Hendy et al. 2015). It had been reported that
higher blood 25-hydroxyvitamin D levels de-
creased the risk of developing CRC (Fedirko et
al. 2012). Coincidently, CASR is one of vitamin
D related genes. On the other hand, functions of
CASR in the progression of CRC might be relate
to the calcium content. Antiproliferative effects
of Ca2+ are impaired or lost in CRC, and this could

be due to reduced CASR expression in the tu-
mors (Rogers et al. 2012; Sukawa et al. 2011).
Hence, this hub DMG played significant roles in
CRC patients.

CONCLUSION

The present study provided a comprehen-
sive bioinformatics analysis of DMGs which
might be involved in the development and pro-
gression of CRC. Further, significant gene sets
enriched by DMGs and hub DMGs might be
potential biomarkers for treatment of CRC and
provide a clue for understanding the potential
pathogenesis of CRC. However, the validations
of these hub DMGs should be performed in CRC
cell lines as soon as possible.

RECOMMENDATIONS

All investigations obtained from the current
study will provide potential targets for CRC treat-
ment, and shed new lights on revealing molecu-
lar mechanism underlying this tumor.
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